Analysis of Class Separation and Combination of Class-Dependent Features for Handwriting Recognition

نویسندگان

  • Il-Seok Oh
  • Jin-Seon Lee
  • Ching Y. Suen
چکیده

ÐIn this paper, we propose a new approach to combine multiple features in handwriting recognition based on two ideas: feature selection-based combination and class-dependent features. A nonparametric method is used for feature evaluation, and the first part of this paper is devoted to the evaluation of features in terms of their class separation and recognition capabilities. In the second part, multiple feature vectors are combined to produce a new feature vector. Based on the fact that a feature has different discriminating powers for different classes, a new scheme of selecting and combining class-dependent features is proposed. In this scheme, a class is considered to have its own optimal feature vector for discriminating itself from the other classes. Using an architecture of modular neural networks as the classifier, a series of experiments were conducted on unconstrained handwritten numerals. The results indicate that the selected features are effective in separating pattern classes and the new feature vector derived from a combination of two types of such features further improves the recognition rate. Index TermsÐHandwriting recognition, class separation, nonparametric method, class-dependent feature combination, modular neural network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Class Separation for Feature Analysis and Combination Features of Class-dependent

In tkis paper, we analyze the class separation ofthefeatures in handwriting recognition. Behaviors of measurement tools are studied with partial and full class$cations. A new scheme ofselecting and combining class-dependentfeatures is proposed. In this scheme, a class is considered to have its own optimalfeature vectorfOr discriminating irselfSrom tke other classes. Using an architecture of mod...

متن کامل

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

Persian Handwriting Analysis Using Functional Principal Components

Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...

متن کامل

Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs

For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...

متن کامل

Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition

To improve the class separability of Fisher linear discriminant analysis (FDA) for large category problems, we investigate the weighted Fisher criterion (WFC) by integrating weighting functions for dimensionality reduction. The objective of WFC is to maximize the sum of weighted distances of all class pairs. By setting larger weights for the most confusable classes, WFC can improve the class se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999